USN

Fifth Semester B.E. Degree Examination, Dec.2013/Jan.2014 Linear IC's and Applications

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting
at least TWO questions from each part.
2. Use of resistor and capacitor standard values list are permitted.

PART - A

- a. With a neatroireuit diagram, explain design and the operation of a high input impedance capacitor coupled voltage follower. Obtain the expression for input impedance of the circuit.

 (08 Marks)
 - b. Briefly discuss the upper cut off frequency of an op-amp circuit and show how the cut-off frequency can be set for inverting amplifier. (06 Marks)
 - c. Design a capacitor coupled inverting amplifier to operate with +20V supply. The minimum input signal level is 50mV, the voltage gain is to be 68, the load resistance is 500Ω , and the lower cutoff frequency is to be 200Hz. Use 741 op-amp. (06 Marks)
- 2 a. Briefly explain:
 - i) Loop gain
 - ii) Loop phase shift
 - iii) Phase margin
 - iv) Unity gain bandwidth

(08 Marks)

- b. Explain the frequency compensation technique, using a phase lag network. (06 Marks)
- c. Calculate the slew rate limited cutoff frequency, maximum peak value of the sinusoidal output voltage and cut off frequency limits rise time, slew rate limited rise time for 741 op-amp. Given: peak of sine wave output is to be 6V, s = 0.5 v/µs and circuit to operate at 800kHz.

 (06 Marks)
- 3 a. With a neat circuit diagram, explain design and the operation of a precision full wave rectifier. (08 Marks)
 - b. With a neat circuit diagram and wave form explain the working of sample and hold circuit.
 (06 Marks)
 - Using Bi-polar op-amp, design a precision clipping circuit to clip a 100kHz sine wave at the ±3V level.
 (06 Marks)
- 4 a. With a circuit diagram, explain the working of a capacitor coupled crossing detector and give the design steps. (07 Marks)
 - b. Using a bipolar op-amp with a $\pm 18V$ supply, design an inverting Schmitt trigger circuit to have UTP = 1.5V and LTP = -3V. (06 Marks)
 - c. Design a monostable multivibrator circuit, to have an output pulse width of 1ms when trigged by a 2V, $100\mu s$ input pulse. Use a 741 op-amp with a $\pm 12V$ supply. Assume $V_{R_2} = 0.5V$.

PART - B

- With a neat circuit diagram and waveforms, explain the operation of triangular / rectangular 5 (08 Marks) wave generator.
 - Using a 741 op-amp with a supply of ±15V, design a phase shift oscillator to have an output frequency of 5.5kHz. Given: $A_V = 29$.
 - c. With a neat circuit diagram and waveform, explain the operation of Wein bridge oscillator. (06 Marks)
- Sketch the circuit of a second order high pass filter. Explain its operation and design 6 (08 Marks) procedure with frequency response curve.
 - Design a narrow band pass filter and explain frequency response with neat circuit diagram. (06 Marks)
 - Design a wide band rejection filter using first order high pass and low pass filters having $F_L = 2kHz$ and $E_H = 400Hz$, respectively with pass band gain at 2. (06 Marks)
- Explain the following performance parameters of a voltage regulator: 7
 - **i**) Line regulation, 1.
 - ii) Load regulation.
 - Ripple rejection.

(06 Marks)

- With a neat circuit diagram, explain the operation of a precision voltage regulator. (06 Marks)
- With a schematic diagram, explain LM217 integrated circuit voltage regulator. Calculate the resistance of R_1 and R_2 for the LM21/7 regulator to produce an output voltage of 9 volts.

(08 Marks)

- 8 Explain with the block diagram, universal active filter. How can it be realized as a second order low pass, high pass and band pass filter? List the salient features of FTT-U2 specialized I_C filter.
 - b. With a block diagram, explain the operation of phase locked loop. List out any four (10 Marks) applications of phased loop principle.